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The conterminous United States are projected to
become more prone to flash floods in a high-end
emissions scenario
Zhi Li 1, Shang Gao 1, Mengye Chen1, Jonathan J. Gourley 2, Changhai Liu3, Andreas F. Prein 3 &

Yang Hong 1✉

Flash floods are largely driven by high rainfall rates in convective storms that are projected to

increase in frequency and intensity in a warmer climate in the future. However, quantifying

the changes in future flood flashiness is challenging due to the lack of high-resolution climate

simulations. Here we use outputs from a continental convective-permitting numerical

weather model at 4-km and hourly resolution and force a numerical hydrologic model at a

continental scale to depict such change. As results indicate, US floods are becoming 7.9%

flashier by the end of the century assuming a high-emissions scenario. The Southwest

(+10.5%) has the greatest increase in flashiness among historical flash flood hot spots, and

the central US (+8.6%) is emerging as a new flash flood hot spot. Additionally, future flash

flood-prone frontiers are advancing northwards. This study calls on implementing climate-

resilient mitigation measures for emerging flash flood hot spots.
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F loods in the United States are the most devastating water-
related natural hazards1–7. According to the National Weather
Service storm reports, floods have cost more than 159 billion

US dollars and 2000 fatalities from 1996 to 2020 (last access: 27 July
2021), let alone immeasurable damage to ecosystems. Among all
types of floods, flash floods are one of the most devastating subsets,
accounting for nearly half of those economic losses6–8. The central
question for the hydrologic science community, practitioners, and
more urgently the weather service agencies becomes: How do future
floods evolve under a changing climate9?

Flood risks are largely tied to increased precipitation extremes
induced by a warmer climate in addition to more direct anthro-
pogenic effects10,11. Although the Clausius-Clapeyron equation
infers a theoretical 7% increase in atmospheric water holding
capacity per degree Celsius warming12, extreme precipitation
might be increasing even more due to changes in storm
structure13, storm dynamics14, and large-scale weather patterns15.
Global Climate Models (GCMs), which are mainly designed for
simulating large-scale climate variables, poorly represent mesoscale
weather systems because of their coarse resolutions (>10 km) and
insufficient parameterization schemes16,17. GCM-based climate
change-related flood studies are limited in assessing changes in
fine-scale flood dynamics that are particularly important for flash
flooding2,10,18. In contrast, convection-permitting models that
operate at kilometer-scale grid spacing17,19 start to resolve con-
vective processes resulting in largely improved simulations of sub-
daily extreme precipitation rates17,20–22. Convection-permitting
models, therefore, offer a valuable alternative for improved
understanding of climate change impacts on flash flooding23.

In this study, hourly data from a 13-year retrospective
convection-permitting climate simulation with 4-km grid spacing
and a 13-year future climate counterpart are used to investigate
underlying future changes in flash floods. The retrospective
simulation (also denoted as control run; CTL) downscales the
ERA-Interim reanalysis24 over the period from October 2000 to
September 2013. The future simulation uses the Pseudo Global
Warming approach (PGW)25,26 by adding climate change per-
turbations to the ERA-Interim boundary conditions and applies
to the same period (2000–2013). Those perturbations are derived
from an ensemble mean of 19 CMIP5 (Coupled Model Inter-
comparison Project 5) GCMs under a high emission scenario
(Representative Concentration Pathway: RCP8.5) during the
period 2071–2100, compared to the reference period 1976–2005.
The PGW simulation focuses on assessing more deterministic
thermodynamic climate change impacts and does not allow
studying the impacts of more uncertain changes in large-scale
weather patterns21. It is noteworthy that the historical synoptic
scale precipitation events are reproduced both in CTL and PGW
owing to the use of spectral nudging21.

Several studies have verified the retrospective simulation (CTL)
against precipitation climatology21, the simulation of hurricanes27,
atmospheric rivers28, snowmelt29, and extreme precipitation13,30,31.
In addition, we verified the CTL run with respect to the most
commonly used precipitation dataset, National Centers for Envir-
onment Prediction Stage IV at four frequency-duration levels (i.e.,
50-year 6-h, 50-year 24-h, 100-year 6-h, and 100-year 24-h events).
For example, a 50-year term refers to frequency while 6-h refers to
precipitation accumulation intervals. We aggregate our results to 17
“homogeneous” climate regions (the Bukovsky regions32; Supple-
mentary Fig. 1) to interpret regional climate differences on future
flood changes.

Future flood risks pertaining to flash floods have not been
thoroughly investigated under climate change scenarios, although
the close relationship between rainfall rates and flood flashiness is
well established by hydrometeorologists as a synoptic or mesos-
cale phenomenon33. Flood resilience, termed as the ability to

mitigate the socioeconomic impacts of floods, has been brought
up frequently in the wake of climate change34. Taking advantage
of the benefits of convection-permitting models, we quantify the
impacts of climate change on future flood flashiness changes over
the conterminous US (CONUS), which conveys information such
as flood hazards, exposure, vulnerability, and impacts in the
future5. In doing so, we use the CTL and PGW simulations to
force a hydrologic model – the Ensemble Framework For Flash
Flood Forecasting (EF5) which has been used operationally in the
U.S. National Weather Service for flash flood forecasting across
the CONUS and territories since 20176,35–37. For the analysis, the
rainfall-flood event isolation and association are essentially nee-
ded to ensure the dependence between streamflow, precipitation,
and antecedent soil moisture38. Based on simulation outputs from
11 full calendar years (2001–2012) at an hourly time step, we
extract flood events (defined by 2-year streamflow values deter-
mined by CTL) for both CTL and PGW runs. For each flood
event, we identify the corresponding rainfall event using the
Characteristic Points Method (CPM)39.

This study hopes to provide quantitative assessments on
changes in future flood-producing storms and flood flashiness,
including geographical shifts in flash flood hotspots. It can be
served as a basis for adapting nationwide flash flood planning
strategies and calls on implementing climate-resilient mitigation
measures for emerging flash flood hotspots.

Results
The results shown in the Supplementary Fig. 2 corroborate the
satisfactory performance of CTL, as compared to Stage IV, with the
correlation coefficient above 0.6. The simulated runoff by EF5 is
compared with the community dataset - Global Streamflow
Characteristic Dataset40 at three percentiles (Quantiles 90, Quan-
tiles 95, and Quantiles 99) (Supplementary Figs. 3 and 4), which
verifies the efficacy of our model results. The rainfall-flood event
association and calculation of the flashiness index (definition
detailed in Methods section) and other characteristics are shown in
Fig. 1a. The frequency change in Fig. 1b highlights that the US
basins (e.g., the Southwest, Great Plains, and Prairie) - character-
ized by an intermittent streamflow regime, which is dominated by
weak seasonality and local floods due to episodic precipitation
events related to thunderstorms or fronts41 - will likely experience
more floods in the PGW simulation. Small-to-medium size US
rivers have a diverse response to warmer climates as their flood
frequency changes range from −50 to 350 % (Fig. 1c). Large river
basins, however, tend to be more stable with reduced uncertainty
ranges. With that being said, small basins have more closely linked
precipitation and streamflow, while floods in large basins are more
likely to be modulated by antecedent basin wetness42.

Despite a general trend of increasing extreme precipitation at
the end of this century in the PGW run30,31, changes in the flood-
producing event precipitation differ across climate divisions
(Fig. 2). Significant positive percent changes (PC) in extreme
precipitation are found across the Rockies (d and h) (PCmean=
34.5%; PC99%= 28.5%) and Appalachia-Atlantic regions (p, n,
and q) (PCmean= 24.7%; PC99%= 21.9%). Flood events in these
regions are typically related to spring snowmelt and rain-on-snow
events4,28,43,44. The flood-producing storms in the future, how-
ever, are likely associated with rainfall excess that is favored in a
warming climate rather than snowfall30. For these regions, future
flood frequencies are nearly doubled (Fig. 1b).

Water vapor availability in the atmosphere in the central and
eastern US plays an essential role in contributing to extreme pre-
cipitation changes11,14,44. Additionally, extreme precipitation events
are typically caused by specific storm types, e.g., (extra)tropical
cyclones27,44, mesoscale convective systems13,45, and the North
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American Monsoon (NAM)44. The 26.6% increase of extreme
precipitation in the eastern US agrees well within previous estimates
of a 25–40% increase in mesoscale convective event rainfall31, which
translates to 104% more frequent floods in the future (Fig. 2).

The largest change in flash-flood-producing precipitation
occurs in the Southwest (e) (PCmean=+40.4%; PC99%= 51.1%),
where the main forcing agent for extreme precipitation is the
NAM. The warm, moist air emanating from the Gulf of Cali-
fornia fuels the storms and supports the “it never rains, but it
pours” pattern in the arid climates, thereby leading to destructive
flash floods3,7,11. Although CMIP5 ensemble members project a
weakening effect of NAM46, its extreme precipitation rates are
still likely to increase31. Correspondingly, future floods are
becoming 123% more frequent there, representing the largest
increase than other regions.

On the other hand, flood-producing extreme precipitation in
the Pacific Southwest (a) and Northwest (b), Mezquital (f) regions
is relatively insensitive to climate change, with only a few grid
cells showing significant changes. Flood frequencies there
increase by 67.1%, half of the probability of the aforementioned
sensitive regions. Extreme precipitation is even projected to lar-
gely decrease in Mezquital (f) for both mean and extreme con-
ditions (Fig. 2b, d), where the thermodynamic changes are likely
limited by atmospheric moisture availability.

Consistent decreases of rainfall and flood event durations (Dr

and Df) are found across the CONUS climate divisions47, mea-
sured by the fraction of events with negative changes (Fig. 3b, c),
among which the Southern Plains (g; 55.8% and 56.7% of the total
events), Deep South (o; 54.1% and 59.9% of the total events) and
Southeast (m; 56.6% and 59.1% of the total events) have above-
normal negative change events (52.1% and 52.4%) in the future.
The shortened duration of rainfall and flooding could be partly
explained by intense yet faster-moving storms in these regions13.
In contrast, the majority of events with positive changes of peak
rainfall rates and flow rates (Rp and Qp) are located in the western
US (Fig. 3b, c), i.e., Pacific Southwest (a; 79.6% and 75.9% of the
total events), Pacific Northwest (b; 83.2% and 80.6% of the total
events), Great Basins (c; 79.1% and 80.2% of the total events), and
Northern Rockies (d; 80.8% and 80.2% of the total events).
Similarly, these regions also see positive changes in rainfall and
flood volumes (Vr and Vf, a – 67.2% and 68.1%; b – 72.6% and
72.3%; c – 70.8% and 72.8%; d – 69.9% and 71.6%). The future
7.5% decrease of lag time between rainfall and flood events is
largely associated with antecedent soil moisture conditions and/or
precipitation intensities, as the wetter soils and/or heavier pre-
cipitation rates accelerate flood-rise time5,36. Specifically, humid
regions with higher soil moisture content (e.g., Mid-Atlantic and
Southeast) in the eastern US have a higher fraction of events

Fig. 1 Schematic view of rainfall-runoff event association at US HUC8 catchment scale. a illustration of calculated flood characteristics; b the percentage
change of flood occurrences comparing the future (PGW) and retrospective analysis (CTL) at 1-km spatial resolution; c conditional plot of frequency
changes against drainage area (shaded contour plot) and standard error of the mean in dark red line. Maps and figures are produced using the Python
package Matplotlib and Cartopy.
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(65.1%) with reduced lag time than arid regions (e.g., Southwest
and Mezquital; 60.3%), pointing to flashier hydrographs. Com-
bined with factors such as peak flow rates (Rf) and time lag (lag),
the flashiness index (flashiness) in the future is increased by 7.9%
over the CONUS.

The present-day flashiness index distribution at the catchment
scale (HUC8, Fig. 4a) is closely related to topography, climatology,
river networks, and event characteristics (e.g., antecedent soil
moisture, peak rainfall, and duration). The West Coast (1), Ari-
zona (2), Rockies (3), Flash Flood Alley (4), and Appalachia (5)
emerge as historical flash-flood hot spots (flashiness index > 0.8).
We found similar clusters to the study of Sahari et al.7, in spite of a
different approach. At the end of this century, the flashiness values
are projected to increase across 87.4% of the HUC8 basins in the
CONUS (Fig. 4b). Outside of the NAM-impacted region of Ari-
zona, other flash-flood hot spots have a moderate increase of
flashiness indices (4.1%). For these basins, the scaling rates, per-
cent of flashiness index increase per warming temperature degree
Celsius (averaged in each climate division), are close to zero
(Fig. 4c). We suspect that the flashiness increase to a large extent is
constrained by the physical limits of the basin geomorphology and
land cover. For Arizona, however, the increase of flood-producing
storms (Fig. 2) contributes to an increase in flashiness indices
(+10.5%). In addition, the central US (e.g., Great Plains – j, i, g
and Prairie - k), which used to be less prone to flash floods, has on
average an 8.5% increase in flashiness indices, posing a potential
threat to future floodwater management. In particular, the Prairie
and Deep South will transition to hot spots in the future (Fig. 4b).
We identify these regions (e.g., Southwest (+10.5%), Prairie
(9.5%), Great Plains (+9.0%)) as climate sensitive regions to flash
floods. Flood risk management including hard measures and soft
measures is challenged by unawareness to potential flash flood

risks. Interestingly, positive flashiness changes are advancing
northward (regions d, j, k, and l).

To link the changes in extreme precipitation and flashiness,
Fig. 4d depicts the relationships among three variables – peak
rainfall rates (Rp), rainfall depth (Vr), and rainfall duration (Dr).
As expected, rainfall duration is weakly tied to the flashiness
index because it is not the determining factor to either flood
rising time or peak flow rates. Yet, both peak rainfall rates and
rainfall volumes are positively correlated with flashiness. These
two variables share a very similar rate of change (Fig. 4d) –
around a 100% increase of extreme rainfall leads to a 10%
increase of flashiness indices. When extreme rainfall change
exceeds more than 120%, the flashiness index reaches a plateau.
The plateau represents the physical limit of maximal channel
conveyance which is jointly determined by catchments’ geo-
graphical properties, including channel morphology, slope, land
surface roughness, and soil properties43,48.

This study conveys some similar conclusions found in other
studies. For instance, decreasing trends in the duration of extreme
rainfall and floods has been widely reported using either historical
observations or climate simulations31,47. High confidence can be
obtained for increases in extreme precipitation amounts across the
continental U.S., but there is variability due to model uncertainties
and changes in regional weather systems. However, disagreements
in streamflow responses to these precipitation changes are found
across studies. For instance, a range of studies indicates decreasing
trends in low-end flood frequencies based on historical observa-
tions, in which they deemphasize the dependence of floods on
precipitation but rather emphasize the importance of antecedent
catchment states49,50. Even within climate model simulations,
results can vary considerably over a given region, provided
uncertainties in climate models, hydrologic model structures,

Fig. 2 Future increase in two-year flood-producing mean and 99th percentile event rainfall (mm) at 2.5-deg spatial resolution, grouped by Bukovsky
climate divisions. a Retrospective mean event rainfall, b Percent changes (pseudo global warming minus retrospective simulation), c Retrospective
extreme event rainfall (99th percentile), and d Percent changes (pseudo global warming minus retrospective simulation) in extreme event rainfall. The dots
highlight significant changes with Kolmogorov–Smirnov two-side test for p-values < 0.05. Maps are produced using the Python package Matplotlib and
Cartopy.
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and/or parameterizations2,11,20. Our results differ from some other
simulations regarding flood magnitudes because firstly we use the
high-end emissions scenario – RCP8.5 – that dramatically warms
and invigorates the atmosphere. Second, unlike both dynamic and
thermodynamic evolution of weather patterns in GCMs, our PGW
scheme only permits investigation of the less uncertain component
of thermodynamic changes to the atmosphere. Third, the hourly
and 4-km resolution model simulations resolve convective-scale
weather phenomena that are only parameterized in GCMs. Pre-
cipitation simulations are more realistic, conditioned on the ther-
modynamic changes associated with RCP 8.5, and thus can be
applied in a hydrologic modeling context. To be noted, we only
investigated the rainfall indices based on rates, volume, time-to-
peak, and duration. Other proper indices such as ratios of peak
rainfall rates and volumes could be meaningful to interpret the
dynamic evolution of rainfall storms.

This work by no means intends to deliver an exhaustive
depiction of future floods. The PGW approach is based on a high-
end emissions scenario (RCP8.5), which may or may not be
realized in the future. Furthermore, anthropogenic impacts such
as Land Use Land Cover type changes and river regulations are

not considered in the modeling settings. One of the reasons is the
uncertain prediction of such processes, even though some stan-
dards are being developed as a community effort51. The Land Use
Land Cover changes especially for urban areas could even worsen
the future situation by reshaping and magnifying hydrologic
responses – less infiltration and more surface runoff52. It is also
reported that urbanization exacerbates extreme rainfall due to
increased aerosols and altered circulations from urban heat
island. Therefore, our results could serve as a basis or benchmark
if not the worst-case scenario.

In summary, there is a pressing need to understand how future
flood flashiness responds to climate change for early mitigation
and adaptation measures. Here we present results that translate
rainfall-flood event changes from convection-permitting climate
simulations to changes in flood flashiness. Four main findings
presented in this study include:

1. A CONUS-wide 7.9% increase in future flood flashiness
means that future floods will onset more rapidly with
higher peak runoff resulting in even shorter opportunities
for early warning.

Fig. 3 Future rainfall/flood durations and rainfall-flood lag time are decreasing while rainfall/flood peak values, volumes, and flashiness index are
increasing. a Boxplot of CONUS-wide statistics of rainfall-flood characteristics where blue dotted line indicates a future decrease while red dotted line
indicates a future increase. Meaning of boxplot elements: central line: median, box limits: 25th and 75th percentiles, upper whisker: 75th percentile plus 1.5
times interquartile range, lower whisker: 25th percentile minus 1.5 times interquartile range. b Maps of the fraction of increase (red) or decrease (blue) for
rainfall characteristics (Dr – duration, Rp – peak rates, and Vr - volume) at Bukovsky climate divisions. c Map of the fraction of increase (red) or decrease
(blue) samples for flow characteristics (Df duration, Vf volume, Qp peak rates, Lag rainfall-flood-peak lag time, and Flashiness) at Bukovsky climate
divisions. Shaded colors in b and c indicate the sample sizes. The blue (red) dashed box indicates a significant decrease (increase) of each feature
(p-value <0.05). The significance test is conducted by Kolmogorov–Smirnov test. Maps are produced using the ArcGIS.
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2. Regions outside of the North American Monsoon have
moderate increases in flashiness (+4.1%) in a warmer
climate. However, floods in the Southwest become much
flashier (+10.5%).

3. The central US have an on average an 8.5% increase in
flood flashiness. Particularly, basins in the Deep South and
Prairie will transition into new flash flood hot spots in a
warmer, future climate.

4. Future flash flood risks are advancing northwards (North-
ern Rockies, Northern Plains, and Prairie), which poses
challenges to local flood resilience measures.

This study shows a pressing need to adapt to climate change
and mitigate future flood risks because of an overall increase of
flashiness over the CONUS, resulting in less response time for
local communities to react. Reassessment of current floodwater
management and planning for future flood risk is necessary for

Fig. 4 Future flashiness indices will increase by 7.9%, while Southwest being affected the most (10.5%). a Present-day flashiness indices driven by the
retrospective analysis (blue box encompass historical flash flood hot spots identified from Sahari et al7.). b Future flashiness changes of the difference of
PGW run and CTL run (blue box encompasses historical flash flood hot spots, and gray box shows the emerged future flood hot spot). c Changes of
flashiness indices for all climate divisions, accompanied by warming rate and scaling rate. Meaning of boxplot elements: central line: median, box limits:
25th and 75th percentiles, upper whisker: 75th percentile plus 1.5 times interquartile range, lower whisker: 25th percentile minus 1.5 times interquartile
range. d Plot regarding binned rainfall changes (including rates – purple line, volumes – red line, and duration – yellow line) on the x axis versus flashiness
indices changes on the y axis. Upper and lower whiskers indicate the 75th and 25th percentile, respectively. Maps and figures are produced using the
Python package Matplotlib and Cartopy.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00409-6

6 COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:86 | https://doi.org/10.1038/s43247-022-00409-6 | www.nature.com/commsenv

www.nature.com/commsenv


judging current standards53. More critically, emerging flash flood
hot spot regions will be facing unprecedented challenges because
of the historically unpreparedness of flood impacts in conjunction
with aging infrastructure and outdated flood risk measures54.
Potential future studies can examine the seasonal cycles and
spatial extent of both storms and floods to reveal the spatio-
temporal correlation between the two. In addition, it is critical to
consider more anthropogenic influences on floods such as river
controls and increased urbanization55,56.

Methods
Datasets. To evaluate the performance of retrospective simulations, we curated
historical extreme rainfall events archived by the Colorado State University Real-
Time Weather Data (http://schumacher.atmos.colostate.edu/precip_monitor/
50y24h/event_images/year_list.php). The extreme precipitation thresholds are
determined by NOAA Atlas 14, which is a gridded product that is derived by over a
hundred-year rainfall gauge dataset and fitted with an assumed distribution. The
hourly precipitation data is based on the National Centers for Environment Pre-
diction Stage IV radar-gauge merged product from the University Cooperation for
Atmospheric Research/National Center for Atmospheric Research Earth Observing
Laboratory. Because Stage IV hourly data availability on the West Coast is generally
under 60%, the evaluation extent is confined to the Midwest and the eastern U.S.
There is a systematic bias (>10%; underestimation) for precipitation between Stage
IV and CTL, partly due to imperfect physical schemes, boundary feedbacks for
regional climate model (RCM) simulations, and climate variability57.

The Global Streamflow Characteristics Dataset, which provides extreme
streamflow values at daily resolution, is used to verify our hydrologic simulations40.
This dataset is a machine-learning-aided product, training catchment streamflow
characteristics based on a set of climate and physiographic features with historical
data from 9169 USGS stream gauges58. The produced results have been assessed
against five global hydrologic models for further independent evaluation. A
negative systematic bias (>8%) for surface runoff persists as propagated from the
aforementioned precipitation bias, but other contributing factors within the
hydrologic model simulations (i.e., calibrated parameters based on different forcing
datasets, uncertainties in hydrologic model structure) slightly compensate for the
precipitation bias.

Climate simulations. Two 4-km and hourly datasets from climate simulations are
analyzed and used as forcing for hydrologic models. Such simulations are created
with the community Weather Research and Forecast (WRF) model Version 3.4.1
(see Liu et al.21 for reference), encompassing the whole CONUS and portions of
Canada and Mexico. The retrospective simulation (CTL) from 1 October 2000 to
30 September 2013 downscales ERA-Interim reanalysis data24, with spectral
nudging being applied. The future climate simulation uses the Pseudo Global
Warming approach (PGW)25,26 by perturbing the climatic boundary conditions
(horizontal wind, geopotential heights, temperature, specific humidity, sea surface
temperature, soil temperature, sea level pressure, and sea ice). An ensemble mean
of climate signals from 19 CMIP5 models for the period 2070 to 2100, relative to
the reference period 1976 to 2005, is added to ERA-Interim boundary conditions
under RCP8.5. In principle, the essence of the PGW run is to assess thermo-
dynamic climate change signals in contrast to changes in large-scale weather
patterns such as shifts of the large-scale storm tracks and North Atlantic jet
stream59. The benefits of PGW simulations are that systematic GCM errors are
mostly excluded in the downscaled simulation, and the effects from climate
internal variability on climate change signals can be thus ignored. Previous model
comparisons between PGW run and CMIP5 reveal similar climate change patterns
over the CONUS21.

Hydrologic models. In this study, the simulated retrospective and future pre-
cipitation events are taken separately as forcing to drive a hydrologic model. We
use the widely recognized flash flood forecast model – the Ensemble Framework
For Flash Flood Forecasting (EF5), developed jointly at the University of Oklahoma
and NOAA National Severe Storms Laboratory (Flamig et al.35). The EF5 model
has been in operation for real-time flash flood forecast across the CONUS and
territories at 1-km spatial resolution and updates every 10 min6. Forecasters in the
U.S. National Weather Services (NWS) utilize this product to issue flash flood
warnings. The model is developed across operating systems (Linux, macOS, and
Windows) and is publicly available at https://github.com/HyDROSLab/EF5.

In this study, we choose the subset hydrologic model - Coupled Routing and
Excess STorage (CREST) V2.135 and routing model – kinematic wave within the
EF5 framework to simulate streamflow at 1 km spatial resolution and hourly
temporal resolution from 2001 to 2011. The nearest neighbor method is used to
downscale precipitation data at 4 km to be consistent with topographic resolution
at 1 km. The distributed parameters for the CREST and the kinematic wave model
remain the same as the operational runs. To separate errors from hydrologic
models and forcing input, we similarly run EF5 using Stage IV as precipitation
inputs for the same period (2001–2011). From the previous model evaluation, this

model is generally suited for flash floods or heavy-rainfall-induced floods while not
modeling snowmelt events or rain-on-snow events35.

Hydrograph separation and rainfall-flood event association. Prior to compar-
isons, the time series of outputs from hydrologic models (i.e., streamflow and
basin-average rainfall rates) are extracted at each HUC8 basin over the CONUS.
Then, flood events are identified according to the following two criteria. First, peak
streamflow should exceed the threshold for a 2-year flood, typically considered as a
bankfull condition18. The two-year flood is determined by fitting annual maximum
streamflow into a log-Pearson Type III distribution, which is a conventional
method used by the U.S. Geological Survey, and extracting values at 2-year
exceedance. Second, to specifically focus on flashier floods, we set a threshold for
the flood rising slope, peak streamflow divided by rising time. This threshold is
computed as a function of upstream flow accumulation values and is empirically
suggested in Chow et al.60, meaning that large basins allow more time to be
considered as flash floods than small basins. For rainfall-flood event association, we
use the Characteristic Point Method, which has been applied to compile a com-
prehensive flood database over the CONUS39. The Characteristic Point Method
firstly separates storm event flow and base flow with the filtered revised constant k
method, which is a hybrid method of the revised constant k and recursive digital
filter. Secondly, event identification is achieved through linking separated flow
events and rainfall events within a search window. For a detailed description and
application of the method, the reader is referred to Mei and Anagnostou61. Some
event signatures are exported to describe the matched rainfall and flood events,
such as rainfall duration (Dr), peak rainfall rate (Rp), rainfall volume (Vr), flood
duration (Df), peak flow rate (Qf), flood volume (Vf), rainfall-flood lag time (Lag).
On top of these signatures, we calculate the flood flashiness index per event with
respect to flood rising time and peak flow rate as shown in Eq. 17.

Flashinesss;i;j ¼
Qps;i;j

� Qbs;i;j

AiTbs;i;j

ð1Þ

where the subscripts s, i, j indicate each scenario (CTL or PGW), HUC8 basin, and
flood event; Qp and Qb refer to the peak flow and base flow, and A and T are the
drainage area and flood rising time. The baseflow is calculated following the
Characteristic Point Method, which uses filtered revised constant k method – a
combination of revised constant k and recursive digital filter – to separate storm
flow and baseflow. To scale the flashiness index values between 0 and 1, we fit a
collection of flashiness values with an empirical cumulative distribution function
(ecdf). Then the basin-level flashiness index is calculated as the median value of all
event-based flashiness values within each basin. Results of flashiness index calcu-
lated using our model outputs are compared to the study of Saharia et al.7 at U.S.
Geological Survey stream gauge locations (Supplementary Fig. 5).

Data availability
The climate simulation data62 is downloaded from the NCAR (National Center for
Atmospheric Research) Research Data Archive (https://rda.ucar.edu/datasets/ds612.0).
Underlying data63 for the main manuscript figures can be accessed at https://doi.org/
10.6084/m9.figshare.19127186.v1.

Code availability
The EF5/CREST model35,64 is publicly available from Zenodo (https://doi.org/10.5281/
zenodo.4009759) and Github (https://github.com/HyDROSLab/EF5). The Matlab code
for Characteristic Point Method can be accessed from https://ucwater.engr.uconn.edu/
models-data/#.
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